Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
bioRxiv ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38659791

RESUMO

Identifying associations between phenotype and genotype is the fundamental basis of genetic analyses. Inspired by frequentist probability and the work of R.A. Fisher, genome-wide association studies (GWAS) extract information using averages and variances from genotype-phenotype datasets. Averages and variances are legitimated upon creating distribution density functions obtained through the grouping of data into categories. However, as data from within a given category cannot be differentiated, the investigative power of such methodologies is limited. Genomic Informational Field Theory (GIFT) is a method specifically designed to circumvent this issue. The way GIFT proceeds is opposite to that of GWAS. Whilst GWAS determines the extent to which genes are involved in phenotype formation (bottom-up approach), GIFT determines the degree to which the phenotype can select microstates (genes) for its subsistence (top-down approach). Doing so requires dealing with new genetic concepts, a.k.a. genetic paths, upon which significance levels for genotype-phenotype associations can be determined. By using different datasets obtained in ovis aries related to bone growth (Dataset-1) and to a series of linked metabolic and epigenetic pathways (Dataset-2), we demonstrate that removing the informational barrier linked to categories enhances the investigative and discriminative powers of GIFT, namely that GIFT extracts more information than GWAS. We conclude by suggesting that GIFT is an adequate tool to study how phenotypic plasticity and genetic assimilation are linked.

2.
BMC Biol ; 22(1): 58, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38468285

RESUMO

BACKGROUND: Cell differentiation requires the integration of two opposite processes, a stabilizing cellular memory, especially at the transcriptional scale, and a burst of gene expression variability which follows the differentiation induction. Therefore, the actual capacity of a cell to undergo phenotypic change during a differentiation process relies upon a modification in this balance which favors change-inducing gene expression variability. However, there are no experimental data providing insight on how fast the transcriptomes of identical cells would diverge on the scale of the very first two cell divisions during the differentiation process. RESULTS: In order to quantitatively address this question, we developed different experimental methods to recover the transcriptomes of related cells, after one and two divisions, while preserving the information about their lineage at the scale of a single cell division. We analyzed the transcriptomes of related cells from two differentiation biological systems (human CD34+ cells and T2EC chicken primary erythrocytic progenitors) using two different single-cell transcriptomics technologies (scRT-qPCR and scRNA-seq). CONCLUSIONS: We identified that the gene transcription profiles of differentiating sister cells are more similar to each other than to those of non-related cells of the same type, sharing the same environment and undergoing similar biological processes. More importantly, we observed greater discrepancies between differentiating sister cells than between self-renewing sister cells. Furthermore, a progressive increase in this divergence from first generation to second generation was observed when comparing differentiating cousin cells to self renewing cousin cells. Our results are in favor of a gradual erasure of transcriptional memory during the differentiation process.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Humanos , Diferenciação Celular/genética , Divisão Celular , Análise de Célula Única/métodos
3.
Methods Mol Biol ; 2745: 163-176, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38060185

RESUMO

The cells of a multicellular organism are derived from a single zygote and genetically almost identical. Yet, they are phenotypically very different. This difference is the result of a process commonly called cell differentiation. How the phenotypic diversity emerges during ontogenesis or regeneration is a central and intensely studied but still unresolved issue in biology. Cell biology is facing conceptual challenges that are frequently confused with methodological difficulties. How to define a cell type? What stability or change means in the context of cell differentiation and how to deal with the ubiquitous molecular variations seen in the living cells? What are the driving forces of the change? We propose to reframe the problem of cell differentiation in a systemic way by incorporating different theoretical approaches. The new conceptual framework is able to capture the insights made at different levels of cellular organization and considered previously as contradictory. It also provides a formal strategy for further experimental studies.


Assuntos
Diferenciação Celular
4.
PLoS One ; 18(8): e0288655, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37527253

RESUMO

Cell lineage tracking is a long-standing and unresolved problem in biology. Microfluidic technologies have the potential to address this problem, by virtue of their ability to manipulate and process single-cells in a rapid, controllable and efficient manner. Indeed, when coupled with traditional imaging approaches, microfluidic systems allow the experimentalist to follow single-cell divisions over time. Herein, we present a valve-based microfluidic system able to probe the decision-making processes of single-cells, by tracking their lineage over multiple generations. The system operates by trapping single-cells within growth chambers, allowing the trapped cells to grow and divide, isolating sister cells after a user-defined number of divisions and finally extracting them for downstream transcriptome analysis. The platform incorporates multiple cell manipulation operations, image processing-based automation for cell loading and growth monitoring, reagent addition and device washing. To demonstrate the efficacy of the microfluidic workflow, 6C2 (chicken erythroleukemia) and T2EC (primary chicken erythrocytic progenitors) cells are tracked inside the microfluidic device over two generations, with a cell viability rate in excess of 90%. Sister cells are successfully isolated after division and extracted within a 500 nL volume, which was demonstrated to be compatible with downstream single-cell RNA sequencing analysis.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Microfluídica/métodos , Linhagem da Célula , Divisão Celular , Processamento de Imagem Assistida por Computador , Sobrevivência Celular , Análise de Célula Única
5.
F1000Res ; 12: 426, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545651

RESUMO

Background: Single-cell studies have demonstrated the presence of significant cell-to-cell heterogeneity in gene expression. Whether such heterogeneity is only a bystander or has a functional role in the cell differentiation process is still hotly debated. Methods: In this study, we quantified and followed single-cell transcriptional uncertainty - a measure of gene transcriptional stochasticity in single cells - in 10 cell differentiation systems of varying cell lineage progressions, from single to multi-branching trajectories, using the stochastic two-state gene transcription model. Results: By visualizing the transcriptional uncertainty as a landscape over a two-dimensional representation of the single-cell gene expression data, we observed universal features in the cell differentiation trajectories that include: (i) a peak in single-cell uncertainty during transition states, and in systems with bifurcating differentiation trajectories, each branching point represents a state of high transcriptional uncertainty; (ii) a positive correlation of transcriptional uncertainty with transcriptional burst size and frequency; (iii) an increase in RNA velocity preceding the increase in the cell transcriptional uncertainty. Conclusions: Our findings suggest a possible universal mechanism during the cell differentiation process, in which stem cells engage stochastic exploratory dynamics of gene expression at the start of the cell differentiation by increasing gene transcriptional bursts, and disengage such dynamics once cells have decided on a particular terminal cell identity. Notably, the peak of single-cell transcriptional uncertainty signifies the decision-making point in the cell differentiation process.


Assuntos
RNA , Células-Tronco , Incerteza , Diferenciação Celular/genética , Linhagem da Célula
6.
PLoS Biol ; 20(10): e3001849, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36288293

RESUMO

When human cord blood-derived CD34+ cells are induced to differentiate, they undergo rapid and dynamic morphological and molecular transformations that are critical for fate commitment. In particular, the cells pass through a transitory phase known as "multilineage-primed" state. These cells are characterized by a mixed gene expression profile, different in each cell, with the coexpression of many genes characteristic for concurrent cell lineages. The aim of our study is to understand the mechanisms of the establishment and the exit from this transitory state. We investigated this issue using single-cell RNA sequencing and ATAC-seq. Two phases were detected. The first phase is a rapid and global chromatin decompaction that makes most of the gene promoters in the genome accessible for transcription. It results 24 h later in enhanced and pervasive transcription of the genome leading to the concomitant increase in the cell-to-cell variability of transcriptional profiles. The second phase is the exit from the multilineage-primed phase marked by a slow chromatin closure and a subsequent overall down-regulation of gene transcription. This process is selective and results in the emergence of coherent expression profiles corresponding to distinct cell subpopulations. The typical time scale of these events spans 48 to 72 h. These observations suggest that the nonspecificity of genome decompaction is the condition for the generation of a highly variable multilineage expression profile. The nonspecific phase is followed by specific regulatory actions that stabilize and maintain the activity of key genes, while the rest of the genome becomes repressed again by the chromatin recompaction. Thus, the initiation of differentiation is reminiscent of a constrained optimization process that associates the spontaneous generation of gene expression diversity to subsequent regulatory actions that maintain the activity of some genes, while the rest of the genome sinks back to the repressive closed chromatin state.


Assuntos
Cromatina , Genoma , Humanos , Cromatina/genética , Linhagem da Célula/genética , Diferenciação Celular/genética , Expressão Gênica
7.
Hum Gene Ther ; 30(8): 1023-1034, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30977420

RESUMO

The initial stages following the in vitro cytokine stimulation of human cord blood CD34+ cells overlap with the period when lentiviral gene transfer is typically performed. Single-cell transcriptional profiling and time-lapse microscopy were used to investigate how the vector-cell crosstalk impacts on the fate decision process. The single-cell transcription profiles were analyzed using a new algorithm, and it is shown that lentiviral transduction during the early stages of stimulation modifies the dynamics of the fate choice process of the CD34+ cells. The cells transduced with a lentiviral vector are biased toward the common myeloid progenitor lineage. Valproic acid, a histone deacetylase inhibitor known to increase the grafting potential of the CD34+ cells, improves the transduction efficiency to almost 100%. The cells transduced in the presence of valproic acid can subsequently undergo normal fate commitment. The higher gene transfer efficiency did not alter the genomic integration profile of the vector. These observations open the way to substantially improving lentiviral gene transfer protocols.


Assuntos
Vetores Genéticos/genética , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Lentivirus/genética , Transdução Genética , Ácido Valproico/farmacologia , Biomarcadores , Diferenciação Celular/efeitos dos fármacos , Sangue Fetal/citologia , Expressão Gênica , Técnicas de Transferência de Genes , Células-Tronco Hematopoéticas/citologia , Humanos , Fenótipo , Transgenes , Integração Viral
8.
Clin Pharmacol Ther ; 105(6): 1477-1491, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30506689

RESUMO

The cytochrome P450 (CYP)4F2 gene is known to influence mean coumarin dose. The aim of the present study was to undertake a meta-analysis at the individual patients level to capture the possible effect of ethnicity, gene-gene interaction, or other drugs on the association and to verify if inclusion of CYP4F2*3 variant into dosing algorithms improves the prediction of mean coumarin dose. We asked the authors of our previous meta-analysis (30 articles) and of 38 new articles retrieved by a systematic review to send us individual patients' data. The final collection consists of 15,754 patients split into a derivation and validation cohort. The CYP4F2*3 polymorphism was consistently associated with an increase in mean coumarin dose (+9% (95% confidence interval (CI) 7-10%), with a higher effect in women, in patients taking acenocoumarol, and in white patients. The inclusion of the CYP4F2*3 in dosing algorithms slightly improved the prediction of stable coumarin dose. New pharmacogenetic equations potentially useful for clinical practice were derived.


Assuntos
Cumarínicos/administração & dosagem , Citocromo P-450 CYP2C9/genética , Família 4 do Citocromo P450/genética , Polimorfismo de Nucleotídeo Único/genética , Vitamina K Epóxido Redutases/genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Cumarínicos/efeitos adversos , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
9.
Methods Mol Biol ; 1702: 27-39, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29119500

RESUMO

The cells of a multicellular organism are derived from a single zygote and genetically identical. Yet, they are phenotypically very different. This difference is the result of a process commonly called cell differentiation. How the phenotypic diversity emerges during ontogenesis or regeneration is a central and intensely studied but still unresolved issue in biology. Cell biology is facing conceptual challenges that are frequently confused with methodological difficulties. How to define a cell type? What stability or change means in the context of cell differentiation and how to deal with the ubiquitous molecular variations seen in the living cells? What are the driving forces of the change? We propose to reframe the problem of cell differentiation in a systemic way by incorporating different theoretical approaches. The new conceptual framework is able to capture the insights made at different levels of cellular organization and considered previously as contradictory. It also provides a formal strategy for further experimental studies.


Assuntos
Ontologias Biológicas , Diferenciação Celular , Fenômenos Fisiológicos Celulares , Regeneração , Animais , Fenômenos Bioquímicos , Humanos , Fenótipo
10.
PLoS Biol ; 15(7): e2001867, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28749943

RESUMO

Individual cells take lineage commitment decisions in a way that is not necessarily uniform. We address this issue by characterising transcriptional changes in cord blood-derived CD34+ cells at the single-cell level and integrating data with cell division history and morphological changes determined by time-lapse microscopy. We show that major transcriptional changes leading to a multilineage-primed gene expression state occur very rapidly during the first cell cycle. One of the 2 stable lineage-primed patterns emerges gradually in each cell with variable timing. Some cells reach a stable morphology and molecular phenotype by the end of the first cell cycle and transmit it clonally. Others fluctuate between the 2 phenotypes over several cell cycles. Our analysis highlights the dynamic nature and variable timing of cell fate commitment in hematopoietic cells, links the gene expression pattern to cell morphology, and identifies a new category of cells with fluctuating phenotypic characteristics, demonstrating the complexity of the fate decision process (which is different from a simple binary switch between 2 options, as it is usually envisioned).


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Multipotentes/metabolismo , Transcrição Gênica , Antígeno AC133/genética , Antígeno AC133/metabolismo , Antígenos CD34/genética , Antígenos CD34/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Forma Celular , Rastreamento de Células , Células Cultivadas , Sangue Fetal/citologia , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Humanos , Processamento de Imagem Assistida por Computador , Microscopia Confocal , Células-Tronco Multipotentes/citologia , Análise de Componente Principal , Análise de Célula Única , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo , Imagem com Lapso de Tempo
11.
Cytometry A ; 91(3): 254-260, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28248454

RESUMO

Cell differentiation is a longitudinal and dynamic process. Studying and quantifying such a process require tools combining precise time resolution and statistical power. Imaging flow cytometry (IFC) provides statistically significant number of microscopy images of individual cells in a sample at a given time point. Time-lapse microscopy (TLM) is the method of choice for studying the dynamics of cell processes at a high temporal, but low statistical resolution. In this work, we show that the dynamic changes of cord-blood derived CD34+ cells in response to cytokine stimulation can be successfully studied, in a label-free way, by the combination of the IFCs statistical power and the TLM's high time resolution. Cell morphology phenotypes were quantified through roundness and surface area, measured both in IFC and with a homemade segmentation algorithm in TLM. Two distinct morphologies-polarized and round-were observed in cord-blood derived CD34+. We show that some cells have the ability to fluctuate between these morphologies, suggesting that the apparent stable composition of round and polarized cells may actually represent a dynamic equilibrium. This example demonstrates that the different resolutions and modalities of IFC and TLM are complementary and allow the study of complex dynamic biological processes. © 2017 International Society for Advancement of Cytometry.


Assuntos
Antígenos CD34/isolamento & purificação , Citometria de Fluxo/métodos , Microscopia/métodos , Imagem com Lapso de Tempo/métodos , Antígenos CD34/metabolismo , Contagem de Células/métodos , Diferenciação Celular/genética , Sangue Fetal/citologia , Sangue Fetal/metabolismo , Humanos , Processamento de Imagem Assistida por Computador/métodos
12.
Artigo em Inglês | MEDLINE | ID: mdl-27408621

RESUMO

BACKGROUND: Lentiviral vectors (LV) are widely used for various gene transfer or gene therapy applications. The effects of LV on target cells are expected to be limited to gene delivery. Yet, human hematopoietic CD34+ cells respond to functional LVs as well as several types of non-integrating LVs by genome-wide DNA methylation changes. RESULTS: A new algorithm for the analysis of 450K Illumina data showed that these changes were marked by de novo methylation. The same 4126 cytosines located in islands corresponding to 1059 genes were systematically methylated. This effect required cellular entry of the viral particle in the cells but not the genomic integration of the vector cassette. Some LV preparations induced only mild sporadic changes while others had strong effects suggesting that LV batch heterogeneity may be related to the extent of the epigenetic response. CONCLUSION: These findings identify a previously uncharacterized but consistent cellular response to viral components and provide a novel example of environmentally modified epigenome.

13.
Sci Rep ; 5: 17756, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26648396

RESUMO

Cell fate choice during the process of differentiation may obey to deterministic or stochastic rules. In order to discriminate between these two strategies we used time-lapse microscopy of individual murine CD4 + T cells that allows investigating the dynamics of proliferation and fate commitment. We observed highly heterogeneous division and death rates between individual clones resulting in a Pareto-like dominance of a few clones at the end of the experiment. Commitment to the Treg fate was monitored using the expression of a GFP reporter gene under the control of the endogenous Foxp3 promoter. All possible combinations of proliferation and differentiation were observed and resulted in exclusively GFP-, GFP+ or mixed phenotype clones of very different population sizes. We simulated the process of proliferation and differentiation using a simple mathematical model of stochastic decision-making based on the experimentally observed parameters. The simulations show that a stochastic scenario is fully compatible with the observed Pareto-like imbalance in the final population.


Assuntos
Modelos Biológicos , Subpopulações de Linfócitos T/metabolismo , Algoritmos , Animais , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Simulação por Computador , Camundongos , Microscopia de Fluorescência , Fenótipo
14.
Immunology ; 144(3): 431-443, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25243909

RESUMO

The generation of large amounts of induced CD4+  CD25+  Foxp3+ regulatory T (iTreg) cells is of great interest for several immunotherapy applications, therefore a better understanding of signals controlling iTreg cell differentiation and expansion is required. There is evidence that oxidative metabolism may regulate several key signalling pathways in T cells. This prompted us to investigate the effects of oxygenation on iTreg cell generation by comparing the effects of atmospheric (21%) or of low (5%) O2 concentrations on the phenotype of bead-stimulated murine splenic CD4+ T cells from Foxp3-KI-GFP T-cell receptor transgenic mice. The production of intracellular reactive oxygen species was shown to play a major role in the generation of iTreg cells, a process characterized by increased levels of Sirt1, PTEN and Glut1 on the committed cells, independently of the level of oxygenation. The suppressive function of iTreg cells generated either in atmospheric or low oxygen levels was equivalent. However, greater yields of iTreg cells were obtained under low oxygenation, resulting from a higher proliferative rate of the committed Treg cells and higher levels of Foxp3, suggesting a better stability of the differentiation process. Higher expression of Glut1 detected on iTreg cells generated under hypoxic culture conditions provides a likely explanation for the enhanced proliferation of these cells as compared to those cultured under ambient oxygen. Such results have important implications for understanding Treg cell homeostasis and developing in vitro protocols for the generation of Treg cells from naive T lymphocytes.

15.
PLoS One ; 9(12): e115574, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25531401

RESUMO

Despite the stochastic noise that characterizes all cellular processes the cells are able to maintain and transmit to their daughter cells the stable level of gene expression. In order to better understand this phenomenon, we investigated the temporal dynamics of gene expression variation using a double reporter gene model. We compared cell clones with transgenes coding for highly stable mRNA and fluorescent proteins with clones expressing destabilized mRNA-s and proteins. Both types of clones displayed strong heterogeneity of reporter gene expression levels. However, cells expressing stable gene products produced daughter cells with similar level of reporter proteins, while in cell clones with short mRNA and protein half-lives the epigenetic memory of the gene expression level was completely suppressed. Computer simulations also confirmed the role of mRNA and protein stability in the conservation of constant gene expression levels over several cell generations. These data indicate that the conservation of a stable phenotype in a cellular lineage may largely depend on the slow turnover of mRNA-s and proteins.


Assuntos
Linhagem da Célula/genética , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Regulação Neoplásica da Expressão Gênica , Retinoblastoma/genética , Retinoblastoma/patologia , Processos Estocásticos , Simulação por Computador , Epigenômica , Genes Reporter , Humanos , Fenótipo , Transcrição Gênica , Células Tumorais Cultivadas
16.
Epigenomics ; 5(4): 429-37, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23895655

RESUMO

The increasing popularity of stem cells in life science research has at least two major causes. On one hand, the study of stem cells may provide insights into one of the major secrets of biology: the mechanisms of cell differentiation. On the other hand, stem cells are potentially promising tools for regenerative therapy. The understanding of how environmental stimuli are translated into phenotypic differentiation through gene expression changes and how the same stimuli at the same time may perturb the normal process of cellular differentiation, growth and maintenance is a central issue for fundamental research but is also essential for the development of efficient and safe procedures for therapeutic use. This article assembles the known facts, as pieces of a puzzle, into a coherent picture around the idea of why stem cells are so sensitive to their culture environment and what practical consequences this implies.


Assuntos
Epigênese Genética , Células-Tronco/metabolismo , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Fenótipo
17.
PLoS One ; 7(11): e48943, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23145033

RESUMO

Epigenetic modifications may occur during in vitro manipulations of stem cells but these effects have remained unexplored in the context of cell and gene therapy protocols. In an experimental model of ex vivo gene modification for hematopoietic gene therapy, human CD34(+) cells were cultured shortly in the presence of cytokines then with a gene transfer lentiviral vector (LV) expected to transduce cells but to have otherwise limited biological effects on the cells. At the end of the culture, the population of cells remained largely similar at the phenotypic level but some epigenetic changes were evident. Exposure of CD34(+) cells to cytokines increased nuclear expression of epigenetic regulators SIRT1 or DNMT1 and caused genome-wide DNA methylation changes. Surprisingly, the LV caused additional and distinct effects. Large-scale genomic DNA methylation analysis showed that balanced methylation changes occurred in about 200 genes following culture of CD34(+) cells in the presence of cytokines but 900 genes were modified following addition of the LV, predominantly increasing CpG methylation. Epigenetic effects resulting from ex vivo culture and from the use of LV may constitute previously unsuspected sources of biological effects in stem cells and may provide new biomarkers to rationally optimize gene and cell therapy protocols.


Assuntos
Antígenos CD34/genética , Terapia Genética/métodos , Lentivirus/genética , Antígenos CD34/metabolismo , Células Cultivadas , Citocinas/metabolismo , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , Epigênese Genética , Epigenômica , Sangue Fetal/metabolismo , Vetores Genéticos/genética , Genoma/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Lentivirus/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Transdução Genética/métodos
18.
J Hum Genet ; 57(10): 665-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22854539

RESUMO

The objective of our present study was to develop a warfarin dosing algorithm for the Omani patients, as performances of warfarin dosing algorithms vary across populations with impact on the daily maintenance dose. We studied the functional polymorphisms of CYP2C9, CYP4F2 and VKORC1 genes to evaluate their impact on the warfarin maintenance dose in an admixed Omani patient cohort with Caucasian, African and Asian ancestries. We observed a 64-fold inter-patient variability for warfarin to achieve stable international normalized ratio in these patients. Univariate analysis revealed that age, gender, weight, atrial fibrillation, deep vein thrombosis/pulmonary embolism and variant genotypes of CYP2C9 and VKORC1 loci were significantly associated with warfarin dose in the studied patient population. However, multiple regression model showed that only the atrial fibrillation, and homozygous CYP2C9 variant genotypes (*2/*3 and *3/*3) and VKORC1 GA and AA genotypes remained significant. A multivariate model, which included demographic, clinical and pharmacogenetic variables together explained 63% of the overall inter-patient variability in warfarin dose requirement in this microgeographically defined, ethnically admixed Omani patient cohort on warfarin. This locally developed model performed much better than the International Warfarin Pharmacogenetics Consortium (IWPC) model as the latter could only explain 34% of the inter-patient variability in Omani patients. VKORC1 3673G>A polymorphism emerged as the single most important predictor of warfarin dose variability, even in this admixed population (partial R(2)=0.45).


Assuntos
Algoritmos , Farmacogenética/métodos , Varfarina/administração & dosagem , Adulto , Idoso , Hidrocarboneto de Aril Hidroxilases/genética , Fibrilação Atrial/tratamento farmacológico , Citocromo P-450 CYP2C9 , Sistema Enzimático do Citocromo P-450/genética , Família 4 do Citocromo P450 , Cálculos da Dosagem de Medicamento , Etnicidade/genética , Feminino , Estudos de Associação Genética , Loci Gênicos , Genética Populacional/métodos , Genótipo , Humanos , Modelos Lineares , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Oxigenases de Função Mista/genética , Omã/etnologia , Polimorfismo Genético , Estudos Prospectivos , Trombose Venosa/tratamento farmacológico , Vitamina K Epóxido Redutases
19.
Prog Biophys Mol Biol ; 110(1): 41-3, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22543273

RESUMO

In the present paper, I propose a hypothesis whereby the necessity to maintain the permanent energy-dissipating metabolic flux represents the primary force that determines the eukaryotic cell's choice to grow, divide and/or differentiate. This view is based on the universal structure and the strict redox neutrality of the core metabolic network. I propose that the direct substrate level coupling between metabolism and gene expression through epigenetic mechanisms provides a mechanistic explanation of how this control is implemented.


Assuntos
Diferenciação Celular , Proliferação de Células , Epigênese Genética , Oxigênio/metabolismo
20.
Hum Biol ; 84(1): 67-77, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22452429

RESUMO

This is the first study to evaluate the spectrum and prevalence of dose-predictive genetic polymorphisms of the CYP2C9, CYP4F2 and VKORC1 loci together, in a geographically defined, ethnically admixed healthy adult Omani population sharing common lifestyle/environmental factors. Since the present-day Omani population is the result of an admixture of Caucasian, African and Asian ancestries, we compared the pharmacogenetic profile of these three loci in this population. Interestingly, the Omani pharmacogenetic profile, in terms of allele and genotype distribution, has values that are intermediate between Caucasians and African Americans, the African admixture further substantiated by the presence of the CYP2C9*8 allele. However, limitations and usefulness of such comparisons warrant caution, as the data from pharmacogenetic literature do not always represent bona fide population categories. Furthermore, definition of study population based on microgeographical scale would be more appropriate in pharmacogenetic research rather than the flawed racial, ethnic, or social categorizations since pharmacogenetic variation is clinal, and genetic influences will be further altered by lifestyle and environmental factors.


Assuntos
Anticoagulantes/farmacologia , Hidrocarboneto de Aril Hidroxilases/genética , Sistema Enzimático do Citocromo P-450/genética , Oxigenases de Função Mista/genética , Varfarina/farmacologia , Adulto , Hidrocarboneto de Aril Hidroxilases/metabolismo , Distribuição de Qui-Quadrado , Citocromo P-450 CYP2C9 , Sistema Enzimático do Citocromo P-450/metabolismo , Família 4 do Citocromo P450 , Feminino , Frequência do Gene , Genótipo , Humanos , Masculino , Oxigenases de Função Mista/metabolismo , Omã , Polimorfismo Genético , Prevalência , Vitamina K Epóxido Redutases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...